SMArt.md.ana package¶
Submodules¶
SMArt.md.ana.incl module¶
-
class
SMArt.md.ana.incl.
Real
(x)[source]¶ Bases:
SMArt.incl.Defaults
-
SMArt.md.ana.incl.
get_lifetime_trans
(states_tser, N_states, state_offset=1, time_tser=None, include_first_state=True, include_last_state=True)[source]¶ count number of transitions and lifetimes of each of the states
-
SMArt.md.ana.incl.
normalize_RGB
(*RGB, fac=1, col_type=<class 'tuple'>)[source]¶ normalize RGB list to 0-1
-
SMArt.md.ana.incl.
sim
(dgdl)[source]¶ numerical integration using Simpson’s rule deprecated - use scipy.integrate.simpson instead
SMArt.md.ana.pert_FE module¶
-
SMArt.md.ana.pert_FE.
calc_dg_exTI_lin
(exTI_data, LPs_pred=None, flag_get_exTI_data_avg=True, fnc2integrate=<function simps>)[source]¶ calculates dG from exTI data using linear interpolation :param exTI_data: :param LPs_pred: :param flag_get_exTI_data_avg: :param fnc2call_left_right: (np.mean by default); it could also be min, max, lambda x:x[0] (return left) :return:
exTI_err excluding / including simulated LPs
-
SMArt.md.ana.pert_FE.
calc_dg_exTI_mbar
(mbar, dEs, LPs_pred, flag_calc_w=True, fnc2integrate=<function simps>)[source]¶
-
SMArt.md.ana.pert_FE.
calc_exTI_err
(exTI_data, LPs_pred=None, flag_get_exTI_data_avg=True, fnc2call_left_right=<function mean>)[source]¶ calculates the difference between predictions from neighbouring points :param exTI_data: :param LPs_pred: :param flag_get_exTI_data_avg: :param fnc2call_left_right: (np.mean by default); it could also be min, max, lambda x:x[0] (return left) :return:
exTI_err excluding / including simulated LPs
-
SMArt.md.ana.pert_FE.
calc_seg_props
(LPs_map, Es, dEs, nfr_mul, si_skips=None, T=300, **kwargs)[source]¶ flag_calc_full_seg_props - include full segment in calc_props
-
SMArt.md.ana.pert_FE.
combine_bar_dhdl
(comb_data, bar_dhdl_data, sim_lp, flag_check_sim_lp=True, append_index=None)[source]¶ combines data into a dictionary bar_dhdl_data is a pandas dataframe with columns LPs_pred and rows values
-
class
SMArt.md.ana.pert_FE.
dG_err_tols
[source]¶ Bases:
SMArt.incl.Defaults
-
SMArt.md.ana.pert_FE.
get_LPs_times
(new_LPs_weights, LPs_times, max_iter_LPs_t, max_iter_t_LP=1.0, max_t_LP=5.0, max_total_LPs_t=100.0, t_step=0.1, min_t_LP=0.5)[source]¶
-
SMArt.md.ana.pert_FE.
get_full_dG_err_from_segs
(seg_data_dG_err, segs2calc_dG, err_method={'full': ['mbar_err']})[source]¶ get the full dG from the segments :param seg_data_dG_err: output from update_LPs_times :param segs2calc_dG: output from update_LPs_times :param err_method: method used to calculate the error estimate of the segments, e.g. dict(full=[‘mbar_err’], BS={N_steps:[‘mbar’]}) :return: dG
-
SMArt.md.ana.pert_FE.
get_full_dG_from_segs
(seg_data_dG_err, segs2calc_dG, method='mbar')[source]¶ get the full dG from the segments :param seg_data_dG_err: output from update_LPs_times :param segs2calc_dG: output from update_LPs_times :param method: method used to calculate the dG of the segments, e.g. ‘mbar’ :return: dG
-
SMArt.md.ana.pert_FE.
get_segments2test
(LPs, LPs_allowed, seg_width_slide=[0.3, 0.1, 0.2, 0.2], dl_merge_list=[0.2, 0.1, 0.05], **kwargs)[source]¶ - Parameters
LPs –
seg_width_slide – parameters to generate segments to calculate properties
dl_merge_list – additional segments to take into account in addition ones defined by the LPs
flag_midpoints – add midpoints between LPs
kwargs – slide_win - in combination with dl_merge_list
- Returns
-
SMArt.md.ana.pert_FE.
prep_mbar_input
(data_bar_sys, data_dhdl_sys=None, LPs=None, LPs_pred=None, skip=1, offset=0, data_frac=1.0, flag_bw=False, **kwargs)[source]¶
-
SMArt.md.ana.pert_FE.
red_d_Es_nfr_mul
(Es, dEs, nfr_mul, data_frac=1.0, offset=0, flag_bw=False, skips=1, flag_rnd_offset=False, flag_bs=False, seed=None, flag_reseed=False, **kwargs)[source]¶
-
SMArt.md.ana.pert_FE.
seg_check_conv_calc_score
(temp_seg, dG_err, tols, fnc_OI=<built-in function min>)[source]¶
-
SMArt.md.ana.pert_FE.
update_LPs_call
(fnc2call, LPs, seg_score_flag, converged_segments, dl_min)[source]¶
-
SMArt.md.ana.pert_FE.
update_LPs_times
(data_bar_sys, data_dhdl_sys=None, T=300, **kwargs)[source]¶ - Parameters
data_bar_sys –
data_dhdl_sys –
T – default 300
kwargs – dg_err_tols (tolerance for different error estimates - dG_err_tols.get_default_dg_err_tols()) seg_width_slide dl_merge_list midpoints_dl_min
- Returns